Publications
2025
-
Talvinen, S., Kim, P., Tovazzi, E., Holopainen, E., Cremer, R., Kühn, T., Kokkola, H., Kipling, Z., Neubauer, D., Teixeira, J. C., Sellar, A., Watson-Parris, D., Yang, Y., Zhu, J., Krishnan, S., Virtanen, A., and Partridge, D. G.: Towards an improved understanding of the impact of clouds and precipitation on the representation of aerosols over the Boreal Forest in GCMs, Atmospheric Chemistry and Physics, 25, 14449–14478, 2025. [doi]
-
Jordan, G., Malavelle, F., Haywood, J., Chen, Y., Johnson, B., Partridge, D., Peace, A., Duncan, E., Watson-Parris, D., Neubauer, D., Laakso, A., Michou, M., and Nabat, P.: How well are aerosol–cloud interactions represented in climate models? – Part 2: Isolating the aerosol impact on clouds following the 2014–2015 Holuhraun eruption, Atmospheric Chemistry and Physics, 25, 13393–13428, 2025. [doi]
-
Baño-Medina, J., Sengupta, A., Michaelis, A., Monache, L. D., Kalansky, J., and Watson-Parris, D.: Harnessing AI Data-Driven Global Weather Models for Climate Attribution: An Analysis of the 2017 Oroville Dam Extreme Atmospheric River, 2025. [doi]
-
Herbert, R. J., Williams, A. I. L., Weiss, P., Watson-Parris, D., Dingley, E., Klocke, D., and Stier, P.: Regional variability of aerosol impacts on clouds and radiation in global kilometer-scale simulations, Atmospheric Chemistry and Physics, 25, 7789–7814, 2025. [doi]
-
Wang, K., Varambally, S., Watson-Parris, D., Ma, Y., and Yu, R.: Discovering Latent Causal Graphs from Spatiotemporal Data, in: , 2025. [link]
-
Lyu, B., Cao, Y., Watson-Parris, D., Bergen, L., Berg-Kirkpatrick, T., and Yu, R.: Adapting While Learning: Grounding LLMs for Scientific Problems with Tool Usage Adaptation, in: , 2025. [link]
-
Watson-Parris, D., Wilcox, L. J., Stjern, C. W., Allen, R. J., Persad, G., Bollasina, M. A., Ekman, A. M. L., Iles, C. E., Joshi, M., Lund, M. T., McCoy, D., Westervelt, D. M., Williams, A. I. L., and Samset, B. H.: Surface temperature effects of recent reductions in shipping SO_\textrm2 emissions are within internal variability, Atmospheric Chemistry and Physics, 25, 4443–4454, 2025. [doi]Highlighted in Science
-
Baño-Medina, J., Sengupta, A., Doyle, J. D., Reynolds, C. A., Watson-Parris, D., and Monache, L. D.: Are AI weather models learning atmospheric physics? A sensitivity analysis of cyclone Xynthia, npj Climate and Atmospheric Science, 8, 92, 2025. [doi]
-
Nowack, P. and Watson-Parris, D.: Opinion: Why all emergent constraints are wrong but some are useful – a machine learning perspective, Atmospheric Chemistry and Physics, 25, 2365–2384, 2025. [doi]
-
Petrenko, M., Kahn, R., Chin, M., Bauer, S. E., Bergman, T., Bian, H., Curci, G., Johnson, B., Kaiser, J. W., Kipling, Z., Kokkola, H., Liu, X., Mezuman, K., Mielonen, T., Myhre, G., Pan, X., Protonotariou, A., Remy, S., Skeie, R. B., Stier, P., Takemura, T., Tsigaridis, K., Wang, H., Watson-Parris, D., and Zhang, K.: Biomass burning emission analysis based on MODIS aerosol optical depth and AeroCom multi-model simulations: implications for model constraints and emission inventories, Atmospheric Chemistry and Physics, 25, 1545–1567, 2025. [doi]
-
Russo, M. R., Bartholomew, S. L., Hassell, D., Mason, A. M., Neininger, E., Perman, A. J., Sproson, D. A. J., Watson-Parris, D., and Abraham, N. L.: Virtual Integration of Satellite and In-situ Observation Networks (VISION) v1.0: In-Situ Observations Simulator (ISO_simulator), Geoscientific Model Development, 18, 181–191, 2025. [doi]
-
Myhre, G., Samset, B. H., Stjern, C. W., Hodnebrog, Ø., Kramer, R., Smith, C., Andrews, T., Boucher, O., Faluvegi, G., Forster, P. M., Iversen, T., Kirkevåg, A., Olivié, D., Shindell, D., Stier, P., and Watson-Parris, D.: The warming effect of black carbon must be reassessed in light of observational constraints, Cell Reports Sustainability, 100428, 2025. [doi]
-
Watson-Parris, D.: Integrating Top-Down Energetic Constraints With Bottom-Up Process-Based Constraints for More Accurate Projections of Future Warming, Geophysical Research Letters, 52, e2024GL114269, 2025. [doi]
-
Lütjens, B., Ferrari, R., Watson-Parris, D., and Selin, N. E.: The Impact of Internal Variability on Benchmarking Deep Learning Climate Emulators, Journal of Advances in Modeling Earth Systems, 17, e2024MS004619, 2025. [doi]
-
Baño-Medina, J., Sengupta, A., Watson-Parris, D., Hu, W., and Delle Monache, L.: Toward Calibrated Ensembles of Neural Weather Model Forecasts, Journal of Advances in Modeling Earth Systems, 17, e2024MS004734, 2025. [doi]
-
Dewey, M., Hansson, H.-C., Watson-Parris, D., Samset, B. H., Wilcox, L. J., Lewinschal, A., Sand, M., Seland, Ø., Krishnan, S., and Ekman, A. M. L.: AeroGP: Machine Learning How Aerosols Impact Regional Climate, Journal of Geophysical Research: Machine Learning and Computation, 2, e2025JH000741, 2025. [doi]
2024
-
Manivannan, V. V., Jafari, Y., Eranky, S., Ho, S., Yu, R., Watson-Parris, D., Ma, Y., Bergen, L., and Berg-Kirkpatrick, T.: ClimaQA: An Automated Evaluation Framework for Climate Question Answering Models, in: , 2024. [link]
-
Niu, R., Wu, D., Kim, K., Ma, Y., Watson-Parris, D., and Yu, R.: Multi-Fidelity Residual Neural Processes for Scalable Surrogate Modeling, in: , 2024. [link]
-
Fiedler, S., Naik, V., O’Connor, F. M., Smith, C. J., Griffiths, P., Kramer, R. J., Takemura, T., Allen, R. J., Im, U., Kasoar, M., Modak, A., Turnock, S., Voulgarakis, A., Watson-Parris, D., Westervelt, D. M., Wilcox, L. J., Zhao, A., Collins, W. J., Schulz, M., Myhre, G., and Forster, P. M.: Interactions between atmospheric composition and climate change – progress in understanding and future opportunities from AerChemMIP, PDRMIP, and RFMIP, Geoscientific Model Development, 17, 2387–2417, 2024. [doi]
-
Jordan, G., Malavelle, F., Chen, Y., Peace, A., Duncan, E., Partridge, D. G., Kim, P., Watson-Parris, D., Takemura, T., Neubauer, D., Myhre, G., Skeie, R., Laakso, A., and Haywood, J.: How well are aerosol–cloud interactions represented in climate models? – Part 1: Understanding the sulfate aerosol production from the 2014–15 Holuhraun eruption, Atmospheric Chemistry and Physics, 24, 1939–1960, 2024. [doi]
-
Bouabid, S., Watson-Parris, D., Stefanović, S., Nenes, A., and Sejdinovic, D.: Aerosol optical depth disaggregation: toward global aerosol vertical profiles, Environmental Data Science, 3, 2024. [doi]
-
Toll, V., Rahu, J., Keernik, H., Trofimov, H., Voormansik, T., Manshausen, P., Hung, E., Michelson, D., Christensen, M. W., Post, P., Junninen, H., Murray, B. J., Lohmann, U., Watson-Parris, D., Stier, P., Donaldson, N., Storelvmo, T., Kulmala, M., and Bellouin, N.: Glaciation of liquid clouds, snowfall, and reduced cloud cover at industrial aerosol hot spots., Science (New York, N.Y.), 386, 756–762, 2024. [doi]
-
Eidhammer, T., Gettelman, A., Thayer-Calder, K., Watson-Parris, D., Elsaesser, G., Morrison, H., Lier-Walqui, M. van, Song, C., and McCoy, D.: An extensible perturbed parameter ensemble for the Community Atmosphere Model version 6, Geoscientific Model Development, 17, 7835–7853, 2024. [doi]
-
Gettelman, A., Eidhammer, T., Duffy, M. L., McCoy, D. T., Song, C., and Watson-Parris, D.: The Interaction Between Climate Forcing and Feedbacks, Journal of Geophysical Research: Atmospheres, 129, e2024JD040857, 2024. [doi]
-
Gettelman, A., Christensen, M. W., Diamond, M. S., Gryspeerdt, E., Manshausen, P., Stier, P., Watson-Parris, D., Yang, M., Yoshioka, M., and Yuan, T.: Has Reducing Ship Emissions Brought Forward Global Warming?, Geophysical Research Letters, 51, e2024GL109077, 2024. [doi]
-
Bouabid, S., Sejdinovic, D., and Watson-Parris, D.: FaIRGP: A Bayesian Energy Balance Model for Surface Temperatures Emulation, Journal of Advances in Modeling Earth Systems, 16, e2023MS003926, 2024. [doi]
-
Song, C., McCoy, D. T., Eidhammer, T., Gettelman, A., McCoy, I. L., Watson-Parris, D., Wall, C. J., Elsaesser, G., and Wood, R.: Buffering of Aerosol-Cloud Adjustments by Coupling Between Radiative Susceptibility and Precipitation Efficiency, Geophysical Research Letters, 51, e2024GL108663, 2024. [doi]
2023
-
Regayre, L. A., Deaconu, L., Grosvenor, D. P., Sexton, D. M. H., Symonds, C., Langton, T., Watson-Paris, D., Mulcahy, J. P., Pringle, K. J., Richardson, M., Johnson, J. S., Rostron, J. W., Gordon, H., Lister, G., Stier, P., and Carslaw, K. S.: Identifying climate model structural inconsistencies allows for tight constraint of aerosol radiative forcing, Atmospheric Chemistry and Physics, 23, 8749–8768, 2023. [doi]
-
Yik, W., Silva, S. J., Geiss, A., and Watson-Parris, D.: Exploring Randomly Wired Neural Networks for Climate Model Emulation, Artificial Intelligence for the Earth Systems, 1–34, 2023. [doi]
-
Manshausen, P., Watson-Parris, D., Christensen, M. W., Jalkanen, J.-P., and Stier, P.: Rapid saturation of cloud water adjustments to shipping emissions, Atmospheric Chemistry and Physics, 23, 12545–12555, 2023. [doi]
-
Williams, A. I. L., Watson-Parris, D., Dagan, G., and Stier, P.: Dependence of fast changes in global and local precipitation on the geographical location of absorbing aerosol, Journal of Climate, 1–38, 2023. [doi]
-
Manshausen, P., Watson-Parris, D., Wagner, L., Maier, P., Muller, S. J., Ramminger, G., and Stier, P.: Pollution tracker: Finding industrial sources of aerosol emission in satellite imagery, Environmental Data Science, 2, 2023. [doi]
2022
-
Harder, P., Watson-Parris, D., Stier, P., Strassel, D., Gauger, N. R., and Keuper, J.: Physics-informed learning of aerosol microphysics, Environmental Data Science, 1, e20, 2022. [doi]
-
Williams, A. I. L., Stier, P., Dagan, G., and Watson-Parris, D.: Strong control of effective radiative forcing by the spatial pattern of absorbing aerosol, Nature Climate Change, 1–8, 2022. [doi]
-
Watson-Parris, D., Christensen, M. W., Laurenson, A., Clewley, D., Gryspeerdt, E., and Stier, P.: Shipping regulations lead to large reduction in cloud perturbations, Proceedings of the National Academy of Sciences, 119, e2206885119, 2022. [doi]Highlight: “Air pollution cools climate more than expected – this makes cutting carbon emissions more urgent.” The Conversation
-
Watson-Parris, D. and Smith, C. J.: Large uncertainty in future warming due to aerosol forcing, Nature Climate Change, 1–3, 2022. [doi]
-
Kasim, M. F., Watson-Parris, D., Deaconu, L., Oliver, S., Hatfield, P., Froula, D. H., Gregori, G., Jarvis, M., Khatiwala, S., Korenaga, J., Topp-Mugglestone, J., Viezzer, E., and Vinko, S. M.: Building high accuracy emulators for scientific simulations with deep neural architecture search, Machine Learning: Science and Technology, 3, 015013, 2022. [doi]Highlight: “From models of galaxies to atoms, simple AI shortcuts speed up simulations by billions of times.” Science
-
Salas-Porras, E. D., Tazi, K., Braude, A., Okoh, D., Lamb, K. D., Watson-Parris, D., Harder, P., and Meinert, N.: Identifying the Causes of Pyrocumulonimbus (PyroCb), arXiv, 2022. [doi]
-
Christensen, M. W., Gettelman, A., Cermak, J., Dagan, G., Diamond, M., Douglas, A., Feingold, G., Glassmeier, F., Goren, T., Grosvenor, D. P., Gryspeerdt, E., Kahn, R., Li, Z., Ma, P.-L., Malavelle, F., McCoy, I. L., McCoy, D. T., McFarquhar, G., Mülmenstädt, J., Pal, S., Possner, A., Povey, A., Quaas, J., Rosenfeld, D., Schmidt, A., Schrödner, R., Sorooshian, A., Stier, P., Toll, V., Watson-Parris, D., Wood, R., Yang, M., and Yuan, T.: Opportunistic experiments to constrain aerosol effective radiative forcing, Atmospheric Chemistry and Physics, 22, 641–674, 2022. [doi]
-
Tazi, K., Salas-Porras, E. D., Braude, A., Okoh, D., Lamb, K. D., Watson-Parris, D., Harder, P., and Meinert, N.: Pyrocast: a Machine Learning Pipeline to Forecast Pyrocumulonimbus (PyroCb) Clouds, arXiv, 2022. [doi]
-
Manshausen, P., Watson-Parris, D., Christensen, M. W., Jalkanen, J.-P., and Stier, P.: Invisible ship tracks show large cloud sensitivity to aerosol, Nature, 610, 101–106, 2022. [doi]Nature Briefing: “Finding the invisible traces of shipping in marine clouds”
-
Che, H., Stier, P., Watson-Parris, D., Gordon, H., and Deaconu, L.: Source attribution of cloud condensation nuclei and their impact on stratocumulus clouds and radiation in the south-eastern Atlantic, Atmospheric Chemistry and Physics, 22, 10789–10807, 2022. [doi]
-
Whaley, C. H., Mahmood, R., Salzen, K. von, Winter, B., Eckhardt, S., Arnold, S., Beagley, S., Becagli, S., Chien, R.-Y., Christensen, J., Damani, S. M., Dong, X., Eleftheriadis, K., Evangeliou, N., Faluvegi, G., Flanner, M., Fu, J. S., Gauss, M., Giardi, F., Gong, W., Hjorth, J. L., Huang, L., Im, U., Kanaya, Y., Krishnan, S., Klimont, Z., Kühn, T., Langner, J., Law, K. S., Marelle, L., Massling, A., Olivié, D., Onishi, T., Oshima, N., Peng, Y., Plummer, D. A., Popovicheva, O., Pozzoli, L., Raut, J.-C., Sand, M., Saunders, L. N., Schmale, J., Sharma, S., Skeie, R. B., Skov, H., Taketani, F., Thomas, M. A., Traversi, R., Tsigaridis, K., Tsyro, S., Turnock, S., Vitale, V., Walker, K. A., Wang, M., Watson-Parris, D., and Weiss-Gibbons, T.: Model evaluation of short-lived climate forcers for the Arctic Monitoring and Assessment Programme: a multi-species, multi-model study, Atmospheric Chemistry and Physics, 22, 5775–5828, 2022. [doi]
2021
-
Sand, M., Samset, B. H., Myhre, G., Gliß, J., Bauer, S. E., Bian, H., Chin, M., Checa-Garcia, R., Ginoux, P., Kipling, Z., Kirkevåg, A., Kokkola, H., Le Sager, P., Lund, M. T., Matsui, H., Noije, T. van, Olivié, D. J. L., Remy, S., Schulz, M., Stier, P., Stjern, C. W., Takemura, T., Tsigaridis, K., Tsyro, S. G., and Watson-Parris, D.: Aerosol absorption in global models from AeroCom phase III, Atmospheric Chemistry and Physics, 21, 15929–15947, 2021. [doi]
-
Watson-Parris, D.: Machine learning for weather and climate are worlds apart, Philosophical Transactions of the Royal Society A, 379, 20200098, 2021. [doi]
-
Allan, J. and Watson-Parris, D.: Measurements of ambient aerosol properties, in: Aerosols and Climate, Elsevier, 2021. [link]
-
Witt, C. S. de, Tong, C., Zantedeschi, V., Martini, D. D., Kalaitzis, A., Chantry, M., Watson-Parris, D., and Bilinski, P.: RainBench: Towards Data-Driven Global Precipitation Forecasting from Satellite Imagery, Proceedings of the AAAI Conference on Artificial Intelligence, 35, 14902–14910, 2021. [doi]
-
Zhang, S., Stier, P., and Watson-Parris, D.: On the contribution of fast and slow responses to precipitation changes caused by aerosol perturbations, Atmospheric Chemistry and Physics, 21, 10179–10197, 2021. [doi]
-
Watson-Parris, D., Williams, A., Deaconu, L., and Stier, P.: Model calibration using ESEm v1.1.0 – an open, scalable Earth system emulator, Geoscientific Model Development, 14, 7659–7672, 2021. [doi]
2020
-
Harder, P., Jones, W., Lguensat, R., Bouabid, S., Fulton, J., Quesada-Chacón, D., Marcolongo, A., Stefanović, S., Rao, Y., Manshausen, P., and Watson-Parris, D.: NightVision: Generating Nighttime Satellite Imagery from Infra-Red Observations, arXiv, 2020. [link]
-
Watson-Parris, D. and Deaconu, L.: Example Perturbed Parameter Ensemble (Black Carbon), , 2020. [doi]
-
Che, H., Stier, P., Gordon, H., Watson-Parris, D., and Deaconu, L.: Cloud adjustments dominate the overall negative aerosol radiative effects of biomass burning aerosols in UKESM1 climate model simulations over the south-eastern Atlantic, Atmospheric Chemistry and Physics, 21, 17–33, 2020. [doi]
-
McCoy, I. L., McCoy, D. T., Wood, R., Regayre, L., Watson-Parris, D., Grosvenor, D. P., Mulcahy, J. P., Hu, Y., Bender, F. A.-M., Field, P. R., Carslaw, K. S., and Gordon, H.: The hemispheric contrast in cloud microphysical properties constrains aerosol forcing, Proceedings of the National Academy of Sciences of the United States of America, 117, 18998–19006, 2020. [doi]
-
Haywood, J. M., Abel, S. J., Barrett, P. A., Bellouin, N., Blyth, A., Bower, K. N., Brooks, M., Carslaw, K., Che, H., Coe, H., Cotterell, M. I., Crawford, I., Cui, Z., Davies, N., Dingley, B., Field, P., Formenti, P., Gordon, H., Graaf, M. de, Herbert, R., Johnson, B., Jones, A. C., Langridge, J. M., Malavelle, F., Partridge, D. G., Peers, F., Redemann, J., Stier, P., Szpek, K., Taylor, J. W., Watson-Parris, D., Wood, R., Wu, H., and Zuidema, P.: The CLoud–Aerosol–Radiation Interaction and Forcing: Year 2017 (CLARIFY-2017) measurement campaign, Atmospheric Chemistry and Physics, 21, 1049–1084, 2020. [doi]
2019
-
Hodnebrog, Ø., Myhre, G., Samset, B. H., Alterskjær, K., Andrews, T., Boucher, O., Faluvegi, G., Fläschner, D., Forster, P. M., Kasoar, M., Kirkevåg, A., Lamarque, J.-F., Olivié, D., Richardson, T. B., Shawki, D., Shindell, D., Shine, K. P., Stier, P., Takemura, T., Voulgarakis, A., and Watson-Parris, D.: Water vapour adjustments and responses differ between climate drivers, Atmospheric Chemistry and Physics, 19, 12887–12899, 2019. [doi]
-
Zantedeschi, V., Falasca, F., Douglas, A., Strange, R., Kusner, M. J., and Watson-Parris, D.: Cumulo: A Dataset for Learning Cloud Classes, arXiv, 2019. [link]Best Paper Award - NeurIPS 2019 Climate Change AI Workshop
-
Watson-Parris, D., Sutherland, S., Christensen, M., Caterini, A., Sejdinovic, D., and Stier, P.: Detecting anthropogenic cloud perturbations with deep learning, arXiv, 2019. [link]Best Paper Award - ICML 2019 Climate Change AI Workshop
-
Fanourgakis, G. S., Kanakidou, M., Nenes, A., Bauer, S. E., Bergman, T., Carslaw, K. S., Grini, A., Hamilton, D. S., Johnson, J. S., Karydis, V. A., Kirkevåg, A., Kodros, J. K., Lohmann, U., Luo, G., Makkonen, R., Matsui, H., Neubauer, D., Pierce, J. R., Schmale, J., Stier, P., Tsigaridis, K., Noije, T. van, Wang, H., Watson-Parris, D., Westervelt, D. M., Yang, Y., Yoshioka, M., Daskalakis, N., Decesari, S., Gysel-Beer, M., Kalivitis, N., Liu, X., Mahowald, N. M., Myriokefalitakis, S., Schrödner, R., Sfakianaki, M., Tsimpidi, A. P., Wu, M., and Yu, F.: Evaluation of global simulations of aerosol particle and cloud condensation nuclei number, with implications for cloud droplet formation, Atmospheric Chemistry and Physics, 19, 8591–8617, 2019. [doi]
-
Watson-Parris, D., Schutgens, N., Reddington, C., Pringle, K. J., Liu, D., Allan, J. D., Coe, H., Carslaw, K. S., and Stier, P.: In situ constraints on the vertical distribution of global aerosol, Atmospheric Chemistry and Physics, 19, 11765–11790, 2019. [doi]
-
Tegen, I., Neubauer, D., Ferrachat, S., Drian, C. S.-L., Bey, I., Schutgens, N., Stier, P., Watson-Parris, D., Stanelle, T., Schmidt, H., Rast, S., Kokkola, H., Schultz, M., Schroeder, S., Daskalakis, N., Barthel, S., Heinold, B., and Lohmann, U.: The global aerosol–climate model ECHAM6.3–HAM2.3 – Part 1: Aerosol evaluation, Geoscientific Model Development, 12, 1643–1677, 2019. [doi]
2018
-
Tegen, I., Lohmann, U., Neubauer, D., Drian, C. S.-L., Ferrachat, S., Heinhold, B., Stier, P., Watson-Parris, D., Schultz, M. G., Schutgens, N. A. J., Rast, S., and Kokkola, H.: The aerosol-climate model ECHAM6.3-HAM2.3: Aerosol evaluation, 2018.
-
Lund, M. T., Samset, B. H., Skeie, R. B., Watson-Parris, D., Katich, J. M., Schwarz, J. P., and Weinzierl, B.: Short Black Carbon lifetime inferred from a global set of aircraft observations, npj Climate and Atmospheric Science, 1, 31, 2018. [doi]
2016
-
Watson-Parris, D., Schutgens, N., Cook, N., Kipling, Z., Kershaw, P., Gryspeerdt, E., Lawrence, B., and Stier, P.: Community Intercomparison Suite (CIS) v1.4.0: a tool for intercomparing models and observations, Geoscientific Model Development, 9, 3093–3110, 2016. [doi]
2013
-
Badcock, T. J., Hammersley, S., Watson-Parris, D., Dawson, P., Godfrey, M. J., Kappers, M. J., McAleese, C., Oliver, R. A., and Humphreys, C. J.: Carrier density dependent localization and consequences for efficiency droop in InGaN/GaN quantum well structures, Japanese Journal of Applied Physics, 52, 2013.
2012
-
Hammersley, S., Watson-Parris, D., Dawson, P., Godfrey, M. J., Badcock, T. J., Kappers, M. J., McAleese, C., Oliver, R. A., and Humphreys, C. J.: The consequences of high injected carrier densities on carrier localization and efficiency droop in InGaN/GaN quantum well structures, Journal of Applied Physics, 111, 083512, 2012. [doi]
2011
-
Watson-Parris, D., Godfrey, M. J., Dawson, P., Oliver, R. A., Galtrey, M. J., Kappers, M. J., and Humphreys, C. J.: Carrier localization mechanisms in InxGa1-xN/GaN quantum wells, Physical Review B - Condensed Matter and Materials Physics, 83, 2011.
-
Hammersley, S., Badcock, T. J., Watson-Parris, D., Godfrey, M. J., Dawson, P., Kappers, M. J., and Humphreys, C. J.: Study of efficiency droop and carrier localisation in an InGaN/GaN quantum well structure, Physica Status Solidi (C), 2196, n/a–n/a, 2011. [doi]
2010
-
Watson-Parris, D., Godfrey, M. J., Oliver, R. A., Dawson, P., Galtrey, M. J., Kappers, M. J., and Humphreys, C. J.: Energy landscape and carrier wave-functions in InGaN/GaN quantum wells, in: Physica Status Solidi (C) Current Topics in Solid State Physics, 2255–2258, 2010.